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INTRODUCTION

The present investigation is concerned with developing methods to monitor mechanical
properties of various types of composites for aerospace applications. These include high
temperature fiber reinforced polymers as well as ceramic matrix composites (CMC) and metal
matrix composites (MMC). The investigation employs the acousto-ultrasonic (AU)
configuration of Ref. [1] with broadband sending and receiving transducers for producing and
detecting ultrasonic waves. With the AU approach, it is possible to observe discrete pulses in
the signal. The ultrasonic velocities of these pulses proved sensitive to variations in stiffness
modulus and fiber/matrix interfacial shear strength in CMC’s [2]. It was theorized that Lamb
waves are produced with the AU configuration in MMC structures [3] and CMC structures [2].
There is a need to clarify the nature of the Lamb wave modes and to show how they can be
used to assess material properties and boundary conditions. It is hoped to thereby demonstrate
a method for monitoring mechanical properties of composites of aerospace interest.

In our present work we identify the above-mentioned discrete pulses as Lamb waves by
constructing dispersion curves for CMC and MMC specimens. These dispersion curves are
compared to the theory developed in Ref. [4] for polymer composites.

THEORETICAL

Application of Approximate Theory for Lamb Waves in Composites

Among the earliest studies of plate waves in structures were those of H. Lamb in 1917 [5].

Recently, Tang and Henneke [4] studied the behavior of these waves in orthotropic fiber



reinforced polymer structures. Tang and Henneke [6] successfully detected changes in Lamb
wave geometrical dispersion curves due to axial stiffness loss produced by transply cracking.

Lamb [5] presented the solutions for ultrasonic wave propagation in an isotropic thin plate.
This type of wave propagation is now referred to as the Lamb wave mode. A thin plate is
defined as having a thickness, h, on the order of the wave length of a bulk wave in the medium.
Under this condition the ultrasonic energy propagates as waves undergoing multiple reflections
from the opposite surfaces. Individual propagation paths loose their identity due to
superposition, and geometrical dispersion occurs. The situation is similar to electromagnetic
waves in a wave guide. For Lamb waves in a plate, however, the propagation radiates out in a
plane rather than a single direction.

It was recognized for some time [7-12] that Lamb wave analysis is of value with AU in
some composite structures. However the Lamb solutions take advantage of symmetries
associated with an isotropic plate. These symmetries are generally not found in composites.
Tang, Henneke, and Stiffler [13] developed an approximate theory for Lamb wave solutions in
laminated composites., Figure 1 is taken from Ref. [4]. Figure 1 shows computed Lamb wave
geometrical dispersion curves for propagation parallel to _the fibers in a unidirectional plate of
the graphite/epoxy system: AS-4(GR)/Pr 288. In Fig. 1, frequency multiplied by specimen
thickness, fh, is plotted against wave number multiplied by thickness, kh. The abscissa,
kh = 2r(h/}). The ordinate, fh, is a velocity. It has been pointed out [14] that where the
curves for the various Lamb modes intersect the ordinate the product fh is the velocity of
through-thickness resonance waves. The inclusion of h in the variables of Fig. 1 has the merit
of normalizing the results for use with plates of any thickness.

The symmetric modes are dilatation waves. This means that their passage causes cycles of

simultaneous outward and then inward surface displacement on the opposite sides of the plate.
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In contrast, the antisymmetric modes are flexure waves. Outward surface displacement on one
side of the plate is opposed by inward displacement on the other.
By definition [15]:
Group velocity V, = dw/dk (1)
Phase velocity V= w/k (2)
k is the wave number which is 27/X. w is radial frequency. As with Ref. [4], we construct
dispersion curves using cycle frequency f = w/2x.
Dispersion occurs when Vg # Vp (3)
It is evident in Fig. 1 that most Lamb modes, (e.g., the ones that do not pass through the
origin), are highly dispersive. This can be seen by considering the phase and group velocity at
- some point on one of these curves. The phase velocity is 2r times the slope of a line connecting
the chosen point to the origin. The group velocity is 27 times the slope of a line tangent to the
curve at the point. For the very dispersive modes shown, phase velocity is always greater than
group velocity. .
Nondispersive modes, or nearly nondispersive, shown in Fig. 1 are linear segments with
intercepts near the origin. The lowest two curves and various curve segments fit into this
category. For these, Vg S Vp. In the AU configuration one expects that pulses leaving the
sending transducers in the f and k regimes of these modes will retain their discrete nature in
transit from sender to receiver whereas the other modes will tend to disperse the pulses into a
much broader time domain signal. This being so, the nondispersive modes ought to be
distinguishable from the rest of the signal. The lowest antisymmetric mode, which is nearly
nondispersive, is unique with respect to the rest of the modes in that it has phase velocity less
than group velocity over the entire range shown. No other mode has phase velocity less than

group velocity. This characteristic could be used to identify the lowest antisymmetric mode.



As kh increase, the above becomes less applicable because in the limit frequency increases
and wave length decreases. Higher frequency leads to greater attenuation and greater difficulty
in collecting a usable signal. Shorter wave lengths lead to interactions with material point
features for wavelengths much less than h. As a result Lamb waves will tend not to propagate.
What is left of the signal becomes stochastic and Lamb wave analysis does not apply.

Sensitivity of Lamb Waves to Mechanical Properties in Composites

The wave equation for the lowest symmetric mode for “symmetric cross-ply and quasi-
isotropic” laminates is [4]:
A K- put=0 (4)
A,, is an extension stiffness in the propagation direction. p is the mass density integrated
through the thickness of the plate. Equation (4) shows that the phase velocity, Vp = w/k, of the
first symmmetric mode pulse is sensitive to the stiffness modulus in the propagation direction.
The solution for the lowest antisymmetric mode for the symmetric cross-ply layup is:
(D k% + Ay - Tw?)(Agek? - pu?) - A %KE =0 (5)
D,, is a bending stiffness, Ay; is a shear stiffness, and I is a density integral. Solutions for
the lowest antisymmetric mode in other layups are more complex than Eq. (5). However, in
each antisymmetric case the Lamb mode is dependent on shear and flexure properties of the
composite [4].
EXPERIMENTAL

Specimens Used in the Study

Tensile specimens were [0] unidirectional SiC/RBSN CMC (SiC fiber reinforced reaction
bonded silicon nitride ceramic matrix composite). Details on thé fabrication and properties of
this material are in Ref. [2]. Unidirectional SiC-6/Ti 15-3 MMC panels were also tested.
Details on fabrication and properties of this material are in Ref. [3]. The specimens are

summarized in Table H



Collection of Acousto-Ultrasonic Data

Figure 2 shows the AU experimental configuration that was employed. Several
combinations of broadband transducers were tried. Best results for MMC’s and CMC’s were
obtained with pairs of 1.0 MHz center frequency and with pairs of 0.5 MHz center frequency
transducers. Elastomer dry couplant pads, 0.32 by 1.27 c¢m, were bonded to the transducer wear
plates and were oriented with long direction perpendicular to the propagation path. The path
length, s, is the distance from sender to receiver.

Waveforms were collected from the receiving transducer response, digitized and stored on
disk. Details of the procedure are described in Ref. [1].

Determination of Group Velocity of Ultrasonic Pulses

Figures 3 to 5 are a sequence of waveforms collected in the AU configuration on the same
[0] unidirectional SiC fiber/RBSN matrix CMC tensile specimen. They show typical data
collected with, respectively, pairs of 2.25, 1.0, and 0.5 MHz broadband transducers. Table I has
been constructed in order to estimate what modes these waveforms appear to correspond to
relative to the Fig. 1 dispersion curves. The comparison is done for the vertical axis, fh, in two
steps: First the product f (center frequency) X h (0.22 cm) in meters/second is calculated.
Second, the fh values are scaled from CMC to graphite/polymer (GP) values by the
transformation:

thgp — thome(Vap/Veme) (6)

This is done because the dispersion curves intersect the fh axis at through-thickness
resonance values [14]. Resonance frequency is proportional to velocity in the thickness direction
[3]. Vgp is through thickness velocity in the graphite/polymer and is taken as 0.27 cm/usec
[3]. Vome is through thickness velocity in the 30 percent porous CMC and is taken as
0.8 cm/psec [16]. Note that the Eq. (6) scaling has greatest validity at the fh axis of the

dispersion curve.



Figure 3 shows a typical AU signal collected with a pair of 2.25 MHz transducers. The
total coupling force on the transducers was 12 N, or an average pressure of 15 N/ cm?. The
transducer frequency and the coupling pressure are typical of earlier AU work [1]. This coupling
pressure to the specimen has been found to be optimum to assure reproducible signals and
relatively low attenuation. Table I indicates that the transducer center frequency times
thickness (after scaling) is equivalent to 1688 m/sec, (0.1688 cm/usec.), on the fh axis of
Fig. 1. This is a region where very dispersive Lamb modes arise.

Decreasing the coupling pressure to about 3.5 N/cm2 decreases the high frequency signal
components and reveals the presence of the lowest Lamb modes. Employing two 1.0 MHz
transducers under these conditions yields waveforms such as the example in Fig. 4. Three pulses
are evident. The earliest arriving pulse is labeled pulse 1 and the next is labeled pulse 2. By
investigating the relation between the positions of the transducers on the specimen and the pulse
arrivals it can be determined that pulses 1 and 2 travel exactly the path length s between the
sender and the receiver. At the same time, it becomes evident that the last arriving pulse is the
echo of pulse 2 after reflecting from the end of the specimen. If two 0.5 MHz transducers are
employed under these conditions waveforms are collected such as the example in Fig. 5. With
two 0.5 MHz transducers pulse 1 is often unresolvable. However, pulse 2 and its echo are more
distinct. Table I shows that the transducer center frequencies for the specimen thickness
employed in these two cases are equivalent to Fig. 1 fh values 372 m/sec (0.0372 cm/usec.},
and 743 m/sec (0.0743 cm/pusec). This is where the lowest symmetric and antisymmetric modes
are found.

Figure 1 shows that the antisymmetric mode has the lower slope and, from Eq. (1), the
lower group velocity. Lower velocity means later arrival as the case of pulse 2 relative to

pulse 1. Hence, we identify pulse 2 as the lowest antisymmetric Lamb mode. We identify



pulse 1 as the lowest symmetric Lamb mode up to the break in that curve. Beyond that it is
likely to represent higher symmetric mode segments.

We will consider arrival times for pulses 1 and 2 that have traveled exactly the distance s
from sending transducer to receiving transducer. This introduces the need for windowing out
unwanted pulses in the signal.

In order to determine the velocities associated with these pulses data was collected over a
range of seven transducer separations, s, ranging from 3.81 to 7.0 cm. The pulse arrival times, t,
were linearly regressed against the s values and the slope was taken as the pulse velocity [2].
This is shown in Fig. 6.

Determination of Phase Velocities

Phase velocities are calculated at frequencies suggested by the pulse data. For example,
pulse 2 (antisymmetric mode) in a CMC tensile specimen with h = 0.216 c¢m has a center
frequency of about 0.5 MHz. Phase velocity is calculated at values from 0.3 to 0.7 MHz for the
pulse. Similarly, the symmetric pulse 1 was centered at 0.9 MHz. Phase velocities were
determined for 0.5 to 1.3 MHz at the arrival of this pulse.

Phase arrival time is determined as follows:

1. The signal is square wave windowed around the already determined pulse arrival time,
t,. For determining phase velocity for frequency f, the window used was t, =+ 1/f. In most
applications, one avoids a square window to avoid unwanted high frequency components.
However, in this case a square wave is desirable because it does not change the shape, and thus
the phases of the frequencies of interest.

2. The windowed signal is Fourier transformed.

3. A sine wave is constructed using the phase associated with the frequency component

interest, f, in the Fourier transform.



4. The sine wave is windowed in the interval t; & 1/2f. This interval will contain exactly
one cycle of frequency f, and therefore one peak, (at sine (7/2)). The sine wave will have the
same phase as the frequency component f in the original pulse.

5. The peak of the windowed sine wave is taken as reference time, t,, for progress of the
phase of frequency f as the transducer separation, s, is changed.

See Appendix I for more detail on determining group arrival times, t;, and phase reference
times, t,.

As with the pulse calculations, transducer separations, s, and arrivals, t,, are regressed.
The change in arrival time of a reference peak in the sine wave is recorded as separation s is
increased. For the first s value used in a set of data the pulse arrival, t,, and phase reference
peak, t,, will be separated by a time interval of no more than 1/f. However, when group and
phase velocity differ (as we expect with the antisymmetric mode), t, and t, can move apart.
Eventually we may have to deal with situations depicted in the sequence of Figs. 7 and 8. In
Fig. 7 the transducer separation, s, is plotted against arrival time of a peak of the f = 0.4 MHz
sine wave. After the fifth point, the peak being followed has moved out of the window and the
peak of the next cycle has replaced it. In Fig. 8 the arrival times after the fifth are adjusted to
the original peak by the transformation:

ty — ty + 1/f (6)
In this example the arrivals are increased by 2.5 psec.
Once the phase velocity is determined, wave number, k, can be calculated from Eq. (2).

Precision in Velocity Determination

Separation, s, ranged from 3.81 to 7.0 ¢cm in 0.5 cm steps. As shown in Fig. 4, both pulse 1
(lowest symmmetric mode) and pulse 2 (lowest antisymmetric mode) data were available with

1.0 MHz transducer waveforms. In addition, sometimes both kinds of data were available with



0.5 MHz transducers. In every experiment the most precise velocities were obtained when
1.0 MHz was used with pulse 1 and 0.5 MHz was used with pulse 2.

For the work in Ref. [2] four group velocity determinations were made on each specimen for
each of the two Lamb modes. From this it was determined that the antisymmetric mode
average Vg generally had a standard deviation below 2.5 percent. The standard deviation for
symmetric mode Vg were as high as 10 percent.

Phase velocities standard deviation was about the same as that of group velocities although
sometimes a much smaller transducer separation range was employed. The symmetric mode
pulses were sufficiently nondispersive so that the pulses did not change shape significantly over
the same s range as used for group velocity. In the case of the antisymmetric mode there was
enough dispersion so that a shorter interval between s values was required so as not to lose
track of the reference peak. In this case, phase velocity s ranged from 4.1 to 4.9 cm in 0.1 cm
steps. Antisymmetric pulses were always so pronounced that the change did not effect precision.
Therefore, the same standard deviation for the average of a set of four determinations of VP
held as quoted above for Vg.

RESULTS AND DISCUSSION

Group Velocities and Mechanical Properties

Figure 9 shows plots of the lowest symmetric mode (pulse 1) and the lowest antisymmetric
mode (pulse 2) group velocities versus angle between propagation path and fiber orientation for
a unidirectional SiC/Ti 15-3 MMC panel. This is specimen 5 in Table II. Note that the pulse 1
velocity is strongly dependent on direction. It is maximum when parallel to the fibers. The
greater the angle between fiber direction and wave path, the lower the velocity.

Figure 10 shows axial modulus of SiC/Ti 15-3 specimens from tensile tests reported in
Ref. [3]. The greater the angle between fibers and axial direction in the tensile specimens, the

lower the modulus. This parallel behavior between group velocity and axial modulus is



predicted for the lowest symmetric Lamb mode in Eq. (4). The antisymmetric mode (pulse 2)
group velocity also shows a slight indication of the same behavior. These plots are taken as
indication of the mechanical property sensitivity discussed in conjunction with Eqgs. (4) and (5).

In Ref. [2] it was shown that the group velocity of the pulses is sensitive to mechanical
properties in SiC/RBSN composite tensile specimens. In that investigation, specimens with the
standard “double carbon coated” SCS-6 SiC fibers were compared to specimens with nondouble
coated SCS-0. The SCS-0 always exhibited higher fiber/matrix interfacial shear strength than
SCS-6. This is reflected in the difference in pulse 2 velocity for the two cases. This difference
appears in the lowest pulse 2 velocities (Fig. 11), but not in the pulse 1. This is consistent with
Eqgs. (4) and (5) if we identify the pulses with the Lamb modes as above.

Lamb Wave Dispersion Plots

Figure 12 is a Lamb wave dispersion plot calculated from the phase velocity data on a [0]
unidirectional SiC/RBSN composite tensile specimen. In Fig. 13 this same data is scaled to
graphite/polymer values by Eq. (6) and plotted on the dispersion diagram from Fig. 1. To
compare Fig. 12 with Fig. 13 assume that: (1) the horizontal axis kh is independent of
whether the composite is graphite/polymer or CMC, and that: (2) the vertical axis fh will
differ, as discussed earlier, as the ratio of through thickness velocity in the two materials. With
these assumptions it appears that both pulse 1 and pulse 2 data fall below their
graphite/polymer counterparts. The pulse 1 and pulse 2 data both lie near the lowest
antisymmetric mode curve.

Although the Eq. (6) rescaling of the CMC fh data is useful to indicate that pulse 1 and
pulse 2 data lie in the lowest regime of the dispersion diagram, their final identification depends
upon their dispersion properties. In particular, the pulse 1 data exhibit no dispersion, which is
the same as the lowest symmetric mode. The pulse 2 data exhibit negative intercept dispersion,

which is the same as the lowest antisymmetric mode.
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Lamb Waves and Mechanical Properties

Thermal degradation in SiC/RBSN causes decrease in both axial modulus and fiber/matrix
interfacial shear strength. It was shown in Ref. [2] that these mechanical degradations are
observable as decreases in the pulse 1 and pulse 2 group velocities. An example of the effect of
this on the dispersion curves is shown in Fig. 14. Here, the pulse 2 (lowest antisymmetric
mode), dispersion curve from Fig. 12 is plotted along with the curve for the same specimen after
degradation from 1 hr at 600C in oxygen.

Figure 15 shows pulse 1 dispersion curves for three unidirectional SiC/Ti 15-3 panels. As
with the CMC data in Fig. 13, we expect the pulse 1 data to correspond to the lowest symmetric
Lamb mode at low kh values. The data were taken for wave propagation along the fiber
direction. The three panels each had different thicknesses, ranging from h = 0.15 to
h = 0.29 cm. They also had different SiC fiber fractions ranging from 15 to 45 percent. The
three panels were measured with the same pair of 1 MHz broadband transducers and dispersion
curves were calculated for the same frequency range. The difference in the slopes, and hence the
group velocities, can be taken as evidence that the axial modulus increases with fiber fraction. It
becomes apparent from Fig. 15 that, with dispersion calibration curves, one could compare
mechanical stiffness parameters of specimens of different thicknesses.

CONCLUSIONS

Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal
matrix composite (MMC) plates using the acousto-ultrasonic configuration employing broadband
transducers.

Based on analysis of dispersion curves the lowest antisymmetric and nondispersive segments

of symmetric Lamb wave modes can then be used to reveal variations of longitudinal stiffness

and also shear strength in CMC’s and MMC’s.
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The use of group velocities is more straightforward in application than the use of phase
velocities to construct dispersion curves. Dispersion curves reveal fundamental relationships
between mechanical properties and the ultrasonic parameters. They allow comparison of
specimens of different geometry.

Although a basis has been established for analyzing Lamb wave velocities for characterizing
composit(VaA plates, further work is negded to establish theoretical geometrical dispersion curves for
various CMC and MMC systems. Comparison of the AU data for high temperature composites
with theoretical dispersion curves for graphite/polymers has some limited value for
demonstration purposes. It establishes the dispersion regime of the CMC and MMC data. CMC

and MMC theoretical curves are still needed for final verification of individual modes.
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TABLE I.—ESTIMATES OF fh FOR SCALING CERAMIC MATRIX
COMPOSITE DATA WITH THE THREE RANGES OF
TRANSDUCER FREQUENCY EMPLOYED TO
GRAPHITE/POLYMER DISPERSION
CURVES OF FIGURE 1

Broadband Specimen | (fh)cpes (fh)gp = Regime of
transducer thickness, m/sec (th) cpme(Var/ Veme)s intercept
center h, m/sec
frequency, cm
MHz
2.25 0.22 5000 1688 Dispersive
B 22 1100 372 Nondispersive
1.0 .22 2200 473 Nondispersive

Vp; through thickness velocity in the graphite/polymer = 0.27 cm/pusec [3].
Vemes through thickness velocity in the 30 percent porous CMC = 0.8 cm/ usec

[16].

TABLE II...SUMMARY OF MATERIALS USED IN THIS STUDY

Material® Geomet;ryb Orientation | Thickness, Fiber,
h, vol. %
cm
As-fabricated Tensile [0] 0.216 30
SCS-6/RBSN
As-fabricated Tensile [0] .216 30
SCS-0/RBSN
SCS-6/RBSN Tensile (0] 216 30
heat treated O,,
600C, 1 hr
SiC/Ti 15-3 Unipanel [0] 15 45
SiC/Ti 15-3 Unipanel (0] A7 34
(varied in
Fig. 9)
SiC/Ti 15-3 Unipanel [0] .29 15

3Information on materials can be found in Refs. [3] and [2].

bTensile specimens were approximately 11.6 by 1.3 cm by thickness.
There were no grips attached. Panels were at least 5 by 15 cm by
thickness.
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Figure 1.—Theoretical Lamb wave geometrical dispersion curves
for propagation parallel to fiber direction of a unidirectional
graphite/polymer laminate. The curves are constructed using
the approximate theory In ref. 4. f= frequency, k = wave
number (= 2w/A), and h = plate thickness. Arrows 1 and 2
point to nondispersive Lamb curves.
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Figure 3.—Waveform collected in acousto-ultrasonic configu-
ration from a [0] unidirectional SiC/RBSN tensile specimen.
Transducers: 2.25 MHz broadband sender and recelver.
Coupling pressure: 15N/cm?2.
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Figure 2.—Acousto-ultrasonic configuration employed for col-
lecting data. s is the centerine spacing between the trans-
ducers. s is varied in these experiments.
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Figure 4 —Same specimen as in Figure 3. Transducers:
1.0 MHz broadband sender and receiver. Coupling
pressure: 3.5N/cm?2.
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Figure 5.—Same specimen as in Figure 3. Transducers:
0.5 MHz broadband sender and receiver. Coupling
pressure: 3.5N/cm2.
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Figure 7.—Plot of transducer separation, s, versus 0.4 MHz
frequency component sine wave referance peak arrival. All
points shown are assoclated with the same pulse 2 on the
same specimen. The plot illustrates the case where, as
separation s was increased, to 0.4 MHz sine wave refer-
ence peak passed out of the calculation window and was
replaced by the next sine wave peak.
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pulse 2 group velocity, Vg from regression slope.
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Figure 11.—Comparison of the response of pulse 2 group
velocity, Vg, and of fiber/matrix interfaclal shear strength
to type of SiC fibers In SiC/RBSN CMC. Data from ref. 2.
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Figure 10.—Axlal modulus of SIC/Ti 15-3 MMC as a function

of O for fiber lay-ups [ + © ]. Axial modulus data is from
destructive tenslle tests in ref. 3.
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Figure 12.—Experimental Lamb wave dispersion curves calcu-
lated for a [0] SiC/RBSN CMC tensile specimen. Calculations
were made from broadband transducer acousto-ultrasonic
data.



------ Symmetric modes
_ Antisymmetric modes
5000 a Data

CMC data
2000
[ W Before oxidation
g O After 05,600 C, 1 hr
u 0O
b g
- |
E1om) - O
g ¥ O
¥
‘ | | ] |
0 5 1.0 1.5 20 25 3.0 0 1 2 3 4

kh kh

Figure 13.—Experimental Lamb wave dispersion data from Figure 14.—Plot of the pulse 2 dispersion curve of SIC/RBSN
Figure 12. The fh values are scaled from SIC/RBSN through CMC in Figure 12 (before oxidation) and pulse 2 dispersion
thickness veloclty to graphite/polymer through thickness curve of the same specimen after 600 C, 1 hr, in O, heat
velocity by equation 6. The data are then plotted with theo- treatment.

retical geometrical dispersion curves for graphite/polymer
from Figure 1.
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Figure 15.—Experimental pulse 1 dispersion curves con-
structed from acousto-uitrasonic data on three SiC/Ti 15-3
MMC panels with varlous thicknesses, h, and SiC fiber
volume per cent. All data were taken with the same pair of
1.0 MHz broadband transducers and all three dispersion
curves were constructed over the same frequency range:
0.5to 1.2 MHz.
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APPENDIX L.—DETERMINATION OF PULSE ARRIVAL TIMES, t,,
AND PHASE REFERENCE TIMES, t,, FOR CALCULATION OF

THE GROUP AND PHASE VELOCITIES

Figure Al shows a typical waveform, wi(t), collected on a SiC/RBSN tensile specimen
employing two 0.5 MHz transducers. There are two pulses in wf(t). The earlier is the pulse 2
of Figs. 4 and 5. It is associated with the first antisymmetric Larﬁb mode and its arrival time is
of interest. The later is the echo of pulse 2 after an end reflection. (In many cases the echo is
larger than the original pulse 2 because it is the superposition of echoes off the opposite ends
when they meet at the receiving transducer.)

Next wif(t) undergoes two processing steps:

(1) Set wf(t) = absolute value (wf(t)) = wi(t)l

(2) Average Wif(t)l over one cycle of the center frequency of the pulse 2, (in this case
average over 1/0.48 MHz), which gives (wf(t)) plotted it Fig. A2.

With the echoes windowed out, the maximum of wif(t) is taken as the pulse arrival time, t;. In
this example, t; = 13.1836 psec. Comparing Figs. A1 and A2 one can see that t; is the
maximum of the pulse 2 amplitude but not necessarily a peak in the original pulse 2 of Fig. Al.

Now that t; is determined, it will be the center for two windows used in determining the
phase reference time t,. Figure A3 is the first step to determining t,. We choose in this
example to determine a reference time for the frequency f = 0.4 MHz. To this end, a window of
the Fig. A1 waveform is constructed for the time interval t, + 1/(0.4 MHz). (As discussed in
the text, the square window is thought to less alter phases in the region of 0.4 MHz than would
other kinds of windows.)

Figure A4 shows the phase spectrum, ®(f), part of the Fourier transform of the waveform

in Fig. A3. The phase, (0.4 MHz), is read off of this phase spectrum.
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Figure A5 shows a constructed sine wave:
sine[27(0.4 MHz)t + ® (0.4 MHz)]
in the windowed interval t;, + 0.5/(0.4 MHz). This window contains exactly one cycle of the
0.4 MHz sine wave. Its one peak, t,, is taken as the 0.4 MHz reference time. In this case,
t, = 13.5742 psec.

Changes of t; as transducer separation, s, is varied determine the pulse group velocity.
Changes of t, as s changeé determine the 0.4 MHz phase velocity. In practice, not one t, but
a set of t,’s are calculated. One is calculated for each of a set of frequencies that are important
in the pulse spectrum. From this, phase velocity as a function of frequency is available for the

construction of an experimental dispersion curve.
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Figure A1.—Typical waveform, wi(t), collected on a
SiC/RBSN specimen and employing two 0.5 MHz trans-
ducer. It contains a pulse 2 and a pulse 2 end refiection
the same as Figure 5.
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Figure A2.—Function, < | wf{t)| > , constructed for
determining pulse arrival time, t;.
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Figure A3.—Square wave windowed wi{t) from Al.
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Figure A4.—Phase spectrum of the Fourier transform of the
windowed wi(t) in Figure A3.
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Figure A5.—Constructed sine wave with frequency 0.4 MHz

and phase equal to the phase at the 0.4 MHz frequency
component of the spectrum of Figure A4.
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